待整理
参考: https://zhuanlan.zhihu.com/p/59205847
本文代码基于PyTorch 1.0版本,需要用到以下包
import collections
import os
import shutil
import tqdm
import numpy as np
import PIL.Image
import torch
import torchvision
- 基础配置
检查PyTorch版本
torch.version # PyTorch version
torch.version.cuda # Corresponding CUDA version
torch.backends.cudnn.version() # Corresponding cuDNN version
torch.cuda.get_device_name(0) # GPU type
更新PyTorch
PyTorch将被安装在anaconda3/lib/python3.7/site-packages/torch/目录下。
conda update pytorch torchvision -c pytorch
固定随机种子
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
指定程序运行在特定GPU卡上
在命令行指定环境变量
CUDA_VISIBLE_DEVICES=0,1 python train.py
或在代码中指定
os.environ[‘CUDA_VISIBLE_DEVICES’] = ‘0,1’
判断是否有CUDA支持
torch.cuda.is_available()
设置为cuDNN benchmark模式
Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异。
torch.backends.cudnn.benchmark = True
如果想要避免这种结果波动,设置
torch.backends.cudnn.deterministic = True
清除GPU存储
有时Control-C中止运行后GPU存储没有及时释放,需要手动清空。在PyTorch内部可以
torch.cuda.empty_cache()
或在命令行可以先使用ps找到程序的PID,再使用kill结束该进程
ps aux | grep python
kill -9 [pid]
或者直接重置没有被清空的GPU
nvidia-smi —gpu-reset -i [gpu_id]
- 张量处理
张量基本信息
tensor.type() # Data type
tensor.size() # Shape of the tensor. It is a subclass of Python tuple
tensor.dim() # Number of dimensions.
数据类型转换
Set default tensor type. Float in PyTorch is much faster than double.
torch.set_default_tensor_type(torch.FloatTensor)
Type convertions.
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()
torch.Tensor与np.ndarray转换
torch.Tensor -> np.ndarray.
ndarray = tensor.cpu().numpy()
np.ndarray -> torch.Tensor.
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride
torch.Tensor与PIL.Image转换
PyTorch中的张量默认采用N×D×H×W的顺序,并且数据范围在[0, 1],需要进行转置和规范化。
torch.Tensor -> PIL.Image.
image = PIL.Image.fromarray(torch.clamp(tensor * 255, min=0, max=255
).byte().permute(1, 2, 0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor) # Equivalently way
PIL.Image -> torch.Tensor.
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))
).permute(2, 0, 1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way
np.ndarray与PIL.Image转换
np.ndarray -> PIL.Image.
image = PIL.Image.fromarray(ndarray.astypde(np.uint8))
PIL.Image -> np.ndarray.
ndarray = np.asarray(PIL.Image.open(path))
从只包含一个元素的张量中提取值
这在训练时统计loss的变化过程中特别有用。否则这将累积计算图,使GPU存储占用量越来越大。
value = tensor.item()
张量形变
张量形变常常需要用于将卷积层特征输入全连接层的情形。相比torch.view,torch.reshape可以自动处理输入张量不连续的情况。
tensor = torch.reshape(tensor, shape)
打乱顺序
tensor = tensor[torch.randperm(tensor.size(0))] # Shuffle the first dimension
水平翻转
PyTorch不支持tensor[::-1]这样的负步长操作,水平翻转可以用张量索引实现。
Assume tensor has shape NDH*W.
tensor = tensor[:, :, :, torch.arange(tensor.size(3) - 1, -1, -1).long()]
复制张量
有三种复制的方式,对应不同的需求。
Operation | New/Shared memory | Still in computation graph |
tensor.clone() # | New | Yes |
tensor.detach() # | Shared | No |
tensor.detach.clone()() # | New | No |
拼接张量
注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,而torch.stack会新增一维。例如当参数是3个10×5的张量,torch.cat的结果是30×5的张量,而torch.stack的结果是3×10×5的张量。
tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)
将整数标记转换成独热(one-hot)编码
PyTorch中的标记默认从0开始。
N = tensor.size(0)
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())
得到非零/零元素
torch.nonzero(tensor) # Index of non-zero elements
torch.nonzero(tensor == 0) # Index of zero elements
torch.nonzero(tensor).size(0) # Number of non-zero elements
torch.nonzero(tensor == 0).size(0) # Number of zero elements
判断两个张量相等
torch.allclose(tensor1, tensor2) # float tensor
torch.equal(tensor1, tensor2) # int tensor
张量扩展
Expand tensor of shape 64512 to shape 6451277.
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)
矩阵乘法
Matrix multiplication: (mn) (np) -> (mp).
result = torch.mm(tensor1, tensor2)
Batch matrix multiplication: (bmn) (bnp) -> (bm*p).
result = torch.bmm(tensor1, tensor2)
Element-wise multiplication.
result = tensor1 * tensor2
计算两组数据之间的两两欧式距离
X1 is of shape m*d.
X1 = torch.unsqueeze(X1, dim=1).expand(m, n, d)
X2 is of shape n*d.
X2 = torch.unsqueeze(X2, dim=0).expand(m, n, d)
dist is of shape m*n, where dist[i][j] = sqrt(|X1[i, :] - X[j, :]|^2)
dist = torch.sqrt(torch.sum((X1 - X2) ** 2, dim=2))
- 模型定义
卷积层
最常用的卷积层配置是
conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True)
conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True)
如果卷积层配置比较复杂,不方便计算输出大小时,可以利用如下可视化工具辅助
Convolution Visualizer
ezyang.github.io
GAP(Global average pooling)层
gap = torch.nn.AdaptiveAvgPool2d(output_size=1)
双线性汇合(bilinear pooling)[1]
X = torch.reshape(N, D, H W) # Assume X has shape NDHW
X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H W) # Bilinear pooling
assert X.size() == (N, D, D)
X = torch.reshape(X, (N, D D))
X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5) # Signed-sqrt normalization
X = torch.nn.functional.normalize(X) # L2 normalization
多卡同步BN(Batch normalization)
当使用torch.nn.DataParallel将代码运行在多张GPU卡上时,PyTorch的BN层默认操作是各卡上数据独立地计算均值和标准差,同步BN使用所有卡上的数据一起计算BN层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。
vacancy/Synchronized-BatchNorm-PyTorch
github.com
图标
现在PyTorch官方已经支持同步BN操作
sync_bn = torch.nn.SyncBatchNorm(num_features, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
将已有网络的所有BN层改为同步BN层
def convertBNtoSyncBN(module, process_group=None):
‘’’Recursively replace all BN layers to SyncBN layer.
Args:
module[torch.nn.Module]. Network
'''
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum,
module.affine, module.track_running_stats, process_group)
sync_bn.running_mean = module.running_mean
sync_bn.running_var = module.running_var
if module.affine:
sync_bn.weight = module.weight.clone().detach()
sync_bn.bias = module.bias.clone().detach()
return sync_bn
else:
for name, child_module in module.named_children():
setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))
return module
类似BN滑动平均
如果要实现类似BN滑动平均的操作,在forward函数中要使用原地(inplace)操作给滑动平均赋值。
class BN(torch.nn.Module)
def init(self):
…
self.register_buffer(‘running_mean’, torch.zeros(num_features))
def forward(self, X):
...
self.running_mean += momentum * (current - self.running_mean)
计算模型整体参数量
num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())
类似Keras的model.summary()输出模型信息
sksq96/pytorch-summary
github.com
图标
模型权值初始化
注意model.modules()和model.children()的区别:model.modules()会迭代地遍历模型的所有子层,而model.children()只会遍历模型下的一层。
Common practise for initialization.
for layer in model.modules():
if isinstance(layer, torch.nn.Conv2d):
torch.nn.init.kaiming_normal_(layer.weight, mode=’fan_out’,
nonlinearity=’relu’)
if layer.bias is not None:
torch.nn.init.constant_(layer.bias, val=0.0)
elif isinstance(layer, torch.nn.BatchNorm2d):
torch.nn.init.constant_(layer.weight, val=1.0)
torch.nn.init.constant_(layer.bias, val=0.0)
elif isinstance(layer, torch.nn.Linear):
torch.nn.init.xavier_normal_(layer.weight)
if layer.bias is not None:
torch.nn.init.constant_(layer.bias, val=0.0)
Initialization with given tensor.
layer.weight = torch.nn.Parameter(tensor)
部分层使用预训练模型
注意如果保存的模型是torch.nn.DataParallel,则当前的模型也需要是torch.nn.DataParallel。torch.nn.DataParallel(model).module == model。
model.load_state_dict(torch.load(‘model,pth’), strict=False)
将在GPU保存的模型加载到CPU
model.load_state_dict(torch.load(‘model,pth’, map_location=’cpu’))
- 数据准备、特征提取与微调
图像分块打散(image shuffle)/区域混淆机制(region confusion mechanism,RCM)[2]
X is torch.Tensor of size NDH*W.
Shuffle rows
Q = (torch.unsqueeze(torch.arange(num_blocks), dim=1) * torch.ones(1, num_blocks).long()
+ torch.randint(low=-neighbour, high=neighbour, size=(num_blocks, num_blocks)))
Q = torch.argsort(Q, dim=0)
assert Q.size() == (num_blocks, num_blocks)
X = [torch.chunk(row, chunks=num_blocks, dim=2)
for row in torch.chunk(X, chunks=num_blocks, dim=1)]
X = [[X[Q[i, j].item()][j] for j in range(num_blocks)]
for i in range(num_blocks)]
Shulle columns.
Q = (torch.ones(num_blocks, 1).long() * torch.unsqueeze(torch.arange(num_blocks), dim=0)
+ torch.randint(low=-neighbour, high=neighbour, size=(num_blocks, num_blocks)))
Q = torch.argsort(Q, dim=1)
assert Q.size() == (num_blocks, num_blocks)
X = [[X[i][Q[i, j].item()] for j in range(num_blocks)]
for i in range(num_blocks)]
Y = torch.cat([torch.cat(row, dim=2) for row in X], dim=1)
得到视频数据基本信息
import cv2
video = cv2.VideoCapture(mp4_path)
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
video.release()
TSN每段(segment)采样一帧视频[3]
K = self._num_segments
if is_train:
if num_frames > K:
# Random index for each segment.
frame_indices = torch.randint(
high=num_frames // K, size=(K,), dtype=torch.long)
frame_indices += num_frames // K * torch.arange(K)
else:
frame_indices = torch.randint(
high=num_frames, size=(K - num_frames,), dtype=torch.long)
frame_indices = torch.sort(torch.cat((
torch.arange(num_frames), frame_indices)))[0]
else:
if num_frames > K:
# Middle index for each segment.
frame_indices = num_frames / K // 2
frame_indices += num_frames // K * torch.arange(K)
else:
frame_indices = torch.sort(torch.cat((
torch.arange(num_frames), torch.arange(K - num_frames))))[0]
assert frame_indices.size() == (K,)
return [frame_indices[i] for i in range(K)]
提取ImageNet预训练模型某层的卷积特征
VGG-16 relu5-3 feature.
model = torchvision.models.vgg16(pretrained=True).features[:-1]
VGG-16 pool5 feature.
model = torchvision.models.vgg16(pretrained=True).features
VGG-16 fc7 feature.
model = torchvision.models.vgg16(pretrained=True)
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
ResNet GAP feature.
model = torchvision.models.resnet18(pretrained=True)
model = torch.nn.Sequential(collections.OrderedDict(
list(model.named_children())[:-1]))
with torch.no_grad():
model.eval()
conv_representation = model(image)
提取ImageNet预训练模型多层的卷积特征
class FeatureExtractor(torch.nn.Module):
“””Helper class to extract several convolution features from the given
pre-trained model.
Attributes:
_model, torch.nn.Module.
_layers_to_extract, list<str> or set<str>
Example:
>>> model = torchvision.models.resnet152(pretrained=True)
>>> model = torch.nn.Sequential(collections.OrderedDict(
list(model.named_children())[:-1]))
>>> conv_representation = FeatureExtractor(
pretrained_model=model,
layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
"""
def __init__(self, pretrained_model, layers_to_extract):
torch.nn.Module.__init__(self)
self._model = pretrained_model
self._model.eval()
self._layers_to_extract = set(layers_to_extract)
def forward(self, x):
with torch.no_grad():
conv_representation = []
for name, layer in self._model.named_children():
x = layer(x)
if name in self._layers_to_extract:
conv_representation.append(x)
return conv_representation
其他预训练模型
Cadene/pretrained-models.pytorch
github.com
图标
微调全连接层
model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Linear(512, 100) # Replace the last fc layer
optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)
以较大学习率微调全连接层,较小学习率微调卷积层
model = torchvision.models.resnet18(pretrained=True)
finetuned_parameters = list(map(id, model.fc.parameters()))
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
parameters = [{‘params’: conv_parameters, ‘lr’: 1e-3},
{‘params’: model.fc.parameters()}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
- 模型训练
常用训练和验证数据预处理
其中ToTensor操作会将PIL.Image或形状为H×W×D,数值范围为[0, 255]的np.ndarray转换为形状为D×H×W,数值范围为[0.0, 1.0]的torch.Tensor。
train_transform = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(size=224,
scale=(0.08, 1.0)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)),
])
val_transform = torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)),
])
训练基本代码框架
for t in epoch(80):
for images, labels in tqdm.tqdm(train_loader, desc=’Epoch %3d’ % (t + 1)):
images, labels = images.cuda(), labels.cuda()
scores = model(images)
loss = loss_function(scores, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
标记平滑(label smoothing)[4]
for images, labels in train_loader:
images, labels = images.cuda(), labels.cuda()
N = labels.size(0)
# C is the number of classes.
smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)
score = model(images)
log_prob = torch.nn.functional.log_softmax(score, dim=1)
loss = -torch.sum(log_prob * smoothed_labels) / N
optimizer.zero_grad()
loss.backward()
optimizer.step()
Mixup[5]
beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
for images, labels in train_loader:
images, labels = images.cuda(), labels.cuda()
# Mixup images.
lambda_ = beta_distribution.sample([]).item()
index = torch.randperm(images.size(0)).cuda()
mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]
# Mixup loss.
scores = model(mixed_images)
loss = (lambda_ * loss_function(scores, labels)
+ (1 - lambda_) * loss_function(scores, labels[index]))
optimizer.zero_grad()
loss.backward()
optimizer.step()
L1正则化
l1_regularization = torch.nn.L1Loss(reduction=’sum’)
loss = … # Standard cross-entropy loss
for param in model.parameters():
loss += lambda_ * torch.sum(torch.abs(param))
loss.backward()
不对偏置项进行L2正则化/权值衰减(weight decay)
bias_list = (param for name, param in model.named_parameters() if name[-4:] == ‘bias’)
others_list = (param for name, param in model.named_parameters() if name[-4:] != ‘bias’)
parameters = [{‘parameters’: bias_list, ‘weight_decay’: 0},
{‘parameters’: others_list}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
梯度裁剪(gradient clipping)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)
计算Softmax输出的准确率
score = model(images)
prediction = torch.argmax(score, dim=1)
num_correct = torch.sum(prediction == labels).item()
accuruacy = num_correct / labels.size(0)
可视化模型前馈的计算图
szagoruyko/pytorchviz
github.com
图标
可视化学习曲线
有Facebook自己开发的Visdom和Tensorboard(仍处于实验阶段)两个选择。
facebookresearch/visdom
github.com
图标
torch.utils.tensorboard - PyTorch master documentation
pytorch.org
Example using Visdom.
vis = visdom.Visdom(env=’Learning curve’, use_incoming_socket=False)
assert self._visdom.check_connection()
self._visdom.close()
options = collections.namedtuple(‘Options’, [‘loss’, ‘acc’, ‘lr’])(
loss={‘xlabel’: ‘Epoch’, ‘ylabel’: ‘Loss’, ‘showlegend’: True},
acc={‘xlabel’: ‘Epoch’, ‘ylabel’: ‘Accuracy’, ‘showlegend’: True},
lr={‘xlabel’: ‘Epoch’, ‘ylabel’: ‘Learning rate’, ‘showlegend’: True})
for t in epoch(80):
tran(…)
val(…)
vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_loss]),
name=’train’, win=’Loss’, update=’append’, opts=options.loss)
vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_loss]),
name=’val’, win=’Loss’, update=’append’, opts=options.loss)
vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_acc]),
name=’train’, win=’Accuracy’, update=’append’, opts=options.acc)
vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_acc]),
name=’val’, win=’Accuracy’, update=’append’, opts=options.acc)
vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([lr]),
win=’Learning rate’, update=’append’, opts=options.lr)
得到当前学习率
If there is one global learning rate (which is the common case).
lr = next(iter(optimizer.param_groups))[‘lr’]
If there are multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:
all_lr.append(param_group[‘lr’])
学习率衰减
Reduce learning rate when validation accuarcy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=’max’, patience=5, verbose=True)
for t in range(0, 80):
train(…); val(…)
scheduler.step(val_acc)
Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):
scheduler.step()
train(…); val(…)
Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):
scheduler.step()
train(…); val(…)
保存与加载断点
注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。
Save checkpoint.
is_best = current_acc > best_acc
best_acc = max(best_acc, current_acc)
checkpoint = {
‘best_acc’: best_acc,
‘epoch’: t + 1,
‘model’: model.state_dict(),
‘optimizer’: optimizer.state_dict(),
}
model_path = os.path.join(‘model’, ‘checkpoint.pth.tar’)
torch.save(checkpoint, model_path)
if is_best:
shutil.copy(‘checkpoint.pth.tar’, model_path)
Load checkpoint.
if resume:
model_path = os.path.join(‘model’, ‘checkpoint.pth.tar’)
assert os.path.isfile(model_path)
checkpoint = torch.load(model_path)
best_acc = checkpoint[‘best_acc’]
start_epoch = checkpoint[‘epoch’]
model.load_state_dict(checkpoint[‘model’])
optimizer.load_state_dict(checkpoint[‘optimizer’])
print(‘Load checkpoint at epoch %d.’ % start_epoch)
计算准确率、查准率(precision)、查全率(recall)
data[‘label’] and data[‘prediction’] are groundtruth label and prediction
for each image, respectively.
accuracy = np.mean(data[‘label’] == data[‘prediction’]) * 100
Compute recision and recall for each class.
for c in range(len(num_classes)):
tp = np.dot((data[‘label’] == c).astype(int),
(data[‘prediction’] == c).astype(int))
tp_fp = np.sum(data[‘prediction’] == c)
tp_fn = np.sum(data[‘label’] == c)
precision = tp / tp_fp 100
recall = tp / tp_fn 100
- 模型测试
计算每个类别的查准率(precision)、查全率(recall)、F1和总体指标
import sklearn.metrics
all_label = []
all_prediction = []
for images, labels in tqdm.tqdm(data_loader):
# Data.
images, labels = images.cuda(), labels.cuda()
# Forward pass.
score = model(images)
# Save label and predictions.
prediction = torch.argmax(score, dim=1)
all_label.append(labels.cpu().numpy())
all_prediction.append(prediction.cpu().numpy())
Compute RP and confusion matrix.
all_label = np.concatenate(all_label)
assert len(all_label.shape) == 1
all_prediction = np.concatenate(all_prediction)
assert all_label.shape == all_prediction.shape
micro_p, micro_r, micro_f1, _ = sklearn.metrics.precision_recall_fscore_support(
all_label, all_prediction, average=’micro’, labels=range(num_classes))
class_p, class_r, class_f1, class_occurence = sklearn.metrics.precision_recall_fscore_support(
all_label, all_prediction, average=None, labels=range(num_classes))
Ci,j = #{y=i and hat_y=j}
confusion_mat = sklearn.metrics.confusion_matrix(
all_label, all_prediction, labels=range(num_classes))
assert confusion_mat.shape == (num_classes, num_classes)
将各类结果写入电子表格
import csv
Write results onto disk.
with open(os.path.join(path, filename), ‘wt’, encoding=’utf-8’) as f:
f = csv.writer(f)
f.writerow([‘Class’, ‘Label’, ‘# occurence’, ‘Precision’, ‘Recall’, ‘F1’,
‘Confused class 1’, ‘Confused class 2’, ‘Confused class 3’,
‘Confused 4’, ‘Confused class 5’])
for c in range(num_classes):
index = np.argsort(confusion_mat[:, c])[::-1][:5]
f.writerow([
label2class[c], c, class_occurence[c], ‘%4.3f’ % class_p[c],
‘%4.3f’ % class_r[c], ‘%4.3f’ % class_f1[c],
‘%s:%d’ % (label2class[index[0]], confusion_mat[index[0], c]),
‘%s:%d’ % (label2class[index[1]], confusion_mat[index[1], c]),
‘%s:%d’ % (label2class[index[2]], confusion_mat[index[2], c]),
‘%s:%d’ % (label2class[index[3]], confusion_mat[index[3], c]),
‘%s:%d’ % (label2class[index[4]], confusion_mat[index[4], c])])
f.writerow([‘All’, ‘’, np.sum(class_occurence), micro_p, micro_r, micro_f1,
‘’, ‘’, ‘’, ‘’, ‘’])
- PyTorch其他注意事项
模型定义
建议有参数的层和汇合(pooling)层使用torch.nn模块定义,激活函数直接使用torch.nn.functional。torch.nn模块和torch.nn.functional的区别在于,torch.nn模块在计算时底层调用了torch.nn.functional,但torch.nn模块包括该层参数,还可以应对训练和测试两种网络状态。使用torch.nn.functional时要注意网络状态,如
def forward(self, x):
…
x = torch.nn.functional.dropout(x, p=0.5, training=self.training)
model(x)前用model.train()和model.eval()切换网络状态。
不需要计算梯度的代码块用with torch.no_grad()包含起来。model.eval()和torch.no_grad()的区别在于,model.eval()是将网络切换为测试状态,例如BN和随机失活(dropout)在训练和测试阶段使用不同的计算方法。torch.no_grad()是关闭PyTorch张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行loss.backward()。
torch.nn.CrossEntropyLoss的输入不需要经过Softmax。torch.nn.CrossEntropyLoss等价于torch.nn.functional.log_softmax + torch.nn.NLLLoss。
loss.backward()前用optimizer.zero_grad()清除累积梯度。optimizer.zero_grad()和model.zero_grad()效果一样。
PyTorch性能与调试
torch.utils.data.DataLoader中尽量设置pin_memory=True,对特别小的数据集如MNIST设置pin_memory=False反而更快一些。num_workers的设置需要在实验中找到最快的取值。
用del及时删除不用的中间变量,节约GPU存储。
使用inplace操作可节约GPU存储,如
x = torch.nn.functional.relu(x, inplace=True)
此外,还可以通过torch.utils.checkpoint前向传播时只保留一部分中间结果来节约GPU存储使用,在反向传播时需要的内容从最近中间结果中计算得到。
减少CPU和GPU之间的数据传输。例如如果你想知道一个epoch中每个mini-batch的loss和准确率,先将它们累积在GPU中等一个epoch结束之后一起传输回CPU会比每个mini-batch都进行一次GPU到CPU的传输更快。
使用半精度浮点数half()会有一定的速度提升,具体效率依赖于GPU型号。需要小心数值精度过低带来的稳定性问题。
时常使用assert tensor.size() == (N, D, H, W)作为调试手段,确保张量维度和你设想中一致。
除了标记y外,尽量少使用一维张量,使用n*1的二维张量代替,可以避免一些意想不到的一维张量计算结果。
统计代码各部分耗时
with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:
…
print(profile)
或者在命令行运行
实用工具
从网上各种资料加上自己实践的可用工具。
主要包括:
模型层数:print_layers_num
模型参数总量:print_model_parm_nums
模型的计算图:def print_autograd_graph():或者参见tensorboad
模型滤波器可视化:show_save_tensor
模型在具体的输入下的尺寸信息summary以及参数量:show_summary
模型计算量:print_model_parm_flops
1 | 式较混乱,但上述代码均可用,后续会继续整理。 |